Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076976

RESUMO

Modern neuroimaging modalities, particularly functional MRI (fMRI), can decode detailed human experiences. Thousands of viewed images can be identified or classified, and sentences can be reconstructed. Decoding paradigms often leverage encoding models that reduce the stimulus space into a smaller yet generalizable feature set. However, the neuroimaging devices used for detailed decoding are non-portable, like fMRI, or invasive, like electrocorticography, excluding application in naturalistic use. Wearable, non-invasive, but lower-resolution devices such as electroencephalography and functional near-infrared spectroscopy (fNIRS) have been limited to decoding between stimuli used during training. Herein we develop and evaluate model-based decoding with high-density diffuse optical tomography (HD-DOT), a higher-resolution expansion of fNIRS with demonstrated promise as a surrogate for fMRI. Using a motion energy model of visual content, we decoded the identities of novel movie clips outside the training set with accuracy far above chance for single-trial decoding. Decoding was robust to modulations of testing time window, different training and test imaging sessions, hemodynamic contrast, and optode array density. Our results suggest that HD-DOT can translate detailed decoding into naturalistic use.

2.
Nat Commun ; 9(1): 4233, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315158

RESUMO

Populations of cortical neurons flexibly perform different functions; for the primary motor cortex (M1) this means a rich repertoire of motor behaviors. We investigate the flexibility of M1 movement control by analyzing neural population activity during a variety of skilled wrist and reach-to-grasp tasks. We compare across tasks the neural modes that capture dominant neural covariance patterns during each task. While each task requires different patterns of muscle and single unit activity, we find unexpected similarities at the neural population level: the structure and activity of the neural modes is largely preserved across tasks. Furthermore, we find two sets of neural modes with task-independent activity that capture, respectively, generic temporal features of the set of tasks and a task-independent mapping onto muscle activity. This system of flexibly combined, well-preserved neural modes may underlie the ability of M1 to learn and generate a wide-ranging behavioral repertoire.


Assuntos
Macaca mulatta/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Força da Mão/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Punho/fisiologia
3.
PLoS One ; 11(7): e0158399, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27463524

RESUMO

The rat vibrissal (whisker) system is one of the oldest and most important models for the study of active tactile sensing and sensorimotor integration. It is well established that primary sensory neurons in the trigeminal ganglion respond to deflections of one and only one whisker, and that these neurons are strongly tuned for both the speed and direction of individual whisker deflections. During active whisking behavior, however, multiple whiskers will be deflected simultaneously. Very little is known about how neurons at central levels of the trigeminal pathway integrate direction and speed information across multiple whiskers. In the present work, we investigated speed and direction coding in the trigeminal brainstem nuclei, the first stage of neural processing that exhibits multi-whisker receptive fields. Specifically, we recorded both single-unit spikes and local field potentials from fifteen sites in spinal trigeminal nucleus interpolaris and oralis while systematically varying the speed and direction of coherent whisker deflections delivered across the whisker array. For 12/15 neurons, spike rate was higher when the whisker array was stimulated from caudal to rostral rather than rostral to caudal. In addition, 10/15 neurons exhibited higher firing rates for slower stimulus speeds. Interestingly, using a simple decoding strategy for the local field potentials and spike trains, classification of speed and direction was higher for field potentials than for single unit spike trains, suggesting that the field potential is a robust reflection of population activity. Taken together, these results point to the idea that population responses in these brainstem regions in the awake animal will be strongest during behaviors that stimulate a population of whiskers with a directionally coherent motion.


Assuntos
Núcleos do Trigêmeo/fisiologia , Vibrissas/fisiologia , Potenciais de Ação , Animais , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...